Under copyright Constraint(s) on Use: This work is protected by the U.S. Copyright Law (Title 17, U.S.C.). Use of this work beyond that allowed by "fair use" or any license applied to this work requires written permission of the copyright holder(s). Responsibility for obtaining permissions and any use and distribution of this work rests exclusively with the user and not the UC San Diego Library. Inquiries can be made to the UC San Diego Library program having custody of the work. Use: This work is available from the UC San Diego Library. This digital copy of the work is intended to support research, teaching, and private study.
Rights Holder and Contact
UC Regents
Description
Aerosol-cloud interactions (ACI) are a leading source of uncertainty in estimates of the historical effective radiative forcing (ERF). One reason for this uncertainty is the difficulty of estimating the ERF from aerosol-cloud interactions (ERFaci) in climate models, which typically requires multiple calls to the radiation code and cannot disentangle the contributions from different process to ERFaci. Here, we develop a new, computationally efficient method for estimating the shortwave (SW) ERFaci from liquid clouds using histograms of monthly-averaged cloud fraction partitioned by cloud droplet effective radius (re) and liquid water path (LWP). Multiplying the histograms with SW cloud radiative kernels gives the total SW ERFaci from liquid clouds, which can be decomposed into contributions from the Twomey effect, LWP adjustments, and cloud-fraction (CF) adjustments. We test the method with data from five CMIP6-era models, using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument simulator to generate the histograms. Our method gives similar total SW ERFaci estimates to other established methods in regions of prevalent liquid cloud, and indicates that the Twomey effect, LWP adjustments, and CF adjustments have contributed −0.34 ± 0.23, −0.22 ± 0.13, and −0.09 ± 0.11 Wm−2, respectively, to the effective radiative forcing of the climate since 1850 in the ensemble mean (95 % confidence). These results demonstrate that widespread adoption of a MODIS re– LWP joint histogram diagnostic would allow the SW ERFaci and its components to be quickly and accurately diagnosed from climate model outputs, a crucial step for reducing uncertainty in the historical ERF. National Science Foundation Graduate Research Fellowship, Grant No. DGE-2038238. Research Data Curation Program, UC San Diego, La Jolla, 92093-0175 (https://lib.ucsd.edu/rdcp) Duran, Brandon M.; Wall, Casey J.; Lutsko, Nicholas J.; Michibata, Takuro; Ma, Po-Lun; Qin, Yi; Duffy, Margaret L.; Debolskiy, Matvey; Medeiros, Brian (2024). Data from: A new method for diagnosing effective radiative forcing from aerosol-cloud interactions in climate models. UC San Diego Library Digital Collections. https://doi.org/10.6075/J0P26ZF1
If you're wondering about permissions and what you can do with this item, a good starting point is the "rights information" on this page. See our terms of use for more tips.
Share your story
Has Calisphere helped you advance your research, complete a project, or find something meaningful? We'd love to hear about it; please send us a message.