Skip to main content

Dataset / Data from: Absorption Spectra of Benzoic Acid in Water at Different pH …

Have a question about this item?

Item information. View source record on contributor's website.

Title
Data from: Absorption Spectra of Benzoic Acid in Water at Different pH and in the Presence of Salts: Insights from the Integration of Experimental Data and Theoretical Cluster Models
Creator
Gerber, R. Benny
Karimova, Natalia V
Date Created and/or Issued
Time period of project: 2018-08-01 to 2019-09-01
Contributing Institution
UC San Diego, Research Data Curation Program
Collection
Center for Aerosol Impacts on Chemistry of the Environment (CAICE)
Rights Information
Under copyright
Constraint(s) on Use: This work is protected by the U.S. Copyright Law (Title 17, U.S.C.). Use of this work beyond that allowed by "fair use" or any license applied to this work requires written permission of the copyright holder(s). Responsibility for obtaining permissions and any use and distribution of this work rests exclusively with the user and not the UC San Diego Library. Inquiries can be made to the UC San Diego Library program having custody of the work.
Use: This work is available from the UC San Diego Library. This digital copy of the work is intended to support research, teaching, and private study.
Rights Holder and Contact
UC Regents
Description
Publication Abstract: The absorption spectra of molecular organic chromophores in aqueous media are of considerable importance in environmental chemistry. In this work, the UV-vis spectra of benzoic acid (BA), the simplest aromatic carboxylic acid, in aqueous solutions at varying pH and in the presence of salts are measured experimentally. The solutions of different pH provide insights into the contributions from both the non-dissociated acid molecule and the deprotonated anionic species. The microscopic interpretation of these spectra is then provided by quantum chemical calculations for small cluster models of benzoic species (benzoic acid and benzoate anion) with water molecules. Calculations of the UV-vis absorbance spectra are then carried out for different clusters such as C6H5COOH·(H2O)n and C6H5COO−·(H2O)n, where n = 0–8. The following main conclusions from these calculations and the comparison to experimental results can be made: (i) the small water cluster yields good quantitative agreement with observed solution experiments; (ii) the main peak position is found to be very similar at different levels of theory and is in excellent agreement with the experimental value, however, a weaker feature about 1 eV to lower energy (red shift) of the main peak is correctly reproduced only by using high level of theory, such as Algebraic Diagrammatic Construction (ADC); (iii) dissociation of the BA into ions is found to occur with a minimum of water molecules of n = 8; (iv) the deprotonation of BA has an influence on the computed spectrum and the energetics of the lowest energy electronic transitions; (v) the effect of the water on the spectra is much larger for the deprotonated species than for the non-dissociated acid. It was found that to reproduce experimental spectrum at pH 8.0, additional continuum representation for the extended solvent environment must be included in combination with explicit solvent molecules (n ≥ 3); (vi) salts (NaCl and CaCl2) have minimal effect on the absorption spectrum and; (vii) experimental results showed that B-band of neutral BA is not sensitive to the solvent effects whereas the effect of the water on the C-band is significant. The water effects blue-shift this band up to ∼0.2 eV. Overall, the results demonstrate the ability to further our understanding of the microscopic interpretation of the electronic structure and absorption spectra of BA in aqueous media through calculations restricted to small cluster models.
Research Data Curation Program, UC San Diego, La Jolla, 92093-0175 (https://lib.ucsd.edu/rdcp)
Karimova, Natalia V.; Luo, Man; Grassian, Vicki H.; Gerber, Benny (2020). Data from: Absorption Spectra of Benzoic Acid in Water at Different pH and in the Presence of Salts: Insights from the Integration of Experimental Data and Theoretical Cluster Models. In Center for Aerosol Impacts on Chemistry of the Environment (CAICE). UC San Diego Library Digital Collections. https://doi.org/10.6075/J0KS6PZR
Is Supplement To: Natalia V. Karimova, Man Luo, Vicki H. Grassian and R. Benny Gerber. 2020. Absorption Spectra of Benzoic Acid in Water at Different pH and in the Presence of Salts: Insights from the Integration of Experimental Data and Theoretical Cluster Models. Phys. Chem. Chem. Phys. 22, 5046-5056. https://doi.org/10.1039/C9CP06728K
Type
Dataset
Language
English
Subject
Organic chromophores
Optical properties
Photochemistry chemistry
Organic acids
Water clusters

About the collections in Calisphere

Learn more about the collections in Calisphere. View our statement on digital primary resources.

Copyright, permissions, and use

If you're wondering about permissions and what you can do with this item, a good starting point is the "rights information" on this page. See our terms of use for more tips.

Share your story

Has Calisphere helped you advance your research, complete a project, or find something meaningful? We'd love to hear about it; please send us a message.

Explore related content on Calisphere: