Under copyright Constraint(s) on Use: This work is protected by the U.S. Copyright Law (Title 17, U.S.C.). Use of this work beyond that allowed by "fair use" or any license applied to this work requires written permission of the copyright holder(s). Responsibility for obtaining permissions and any use and distribution of this work rests exclusively with the user and not the UC San Diego Library. Inquiries can be made to the UC San Diego Library program having custody of the work. Use: This work is available from the UC San Diego Library. This digital copy of the work is intended to support research, teaching, and private study.
From the onset of the COVID-19 pandemic, a dramatic change in traffic patterns has been observed across the country due to travel and other restrictions imposed by government agencies and health experts. The causes for these abrupt changes can be at least partially attributed to the severity of the pandemic, the widespread increase in remote work and online learning, business closures, etc. Considering these changes, we hypothesize that the performance of static time series models used for traffic forecasting will degrade beginning in early 2020. Dynamic models that do not rely solely on historical information will better forecast day-to-day traffic and be able to learn long-term changes in traffic patterns. We present a graph convolutional recurrent neural network that captures both the inherent spatial and temporal complexities present in traffic forecasting. The algorithm is part of a larger deep learning library for time series modeling being developed for the open-source community. Research Data Curation Program, UC San Diego, La Jolla, 92093-0175 (https://lib.ucsd.edu/rdcp) Gupta, Aparna; Lane, Kevin; Martinez, Raul; Roten, Daniel; Shah, Akash; Yu, Rose (2021). Time Series Forecasting. In Data Science & Engineering Master of Advanced Study (DSE MAS) Capstone Projects. UC San Diego Library Digital Collections. https://doi.org/10.6075/J03F4PHC
Type
dataset
Identifier
ark:/20775/bb3352917m
Language
English
Subject
COVID-19 Spatiotemporal Data Science & Engineering Master of Advanced Study (DSE MAS) Capstone projects Traffic forecasting Autoregressive Physics-based neural network Recurrent neural network Graph convolution Time-series Deep learning DSE MAS - 2021 Cohort
If you're wondering about permissions and what you can do with this item, a good starting point is the "rights information" on this page. See our terms of use for more tips.
Share your story
Has Calisphere helped you advance your research, complete a project, or find something meaningful? We'd love to hear about it; please send us a message.