Skip to main content

Dataset / Data From: Reactions of N2O5 with Salty and Surfactant-Coated Glycerol: Interfacial Conversion …

Have a question about this item?

Item information. View source record on contributor's website.

Title
Data From: Reactions of N2O5 with Salty and Surfactant-Coated Glycerol: Interfacial Conversion of Br– to Br2 Mediated by Alkylammonium Cations
Creator
Nathanson, Gilbert M
Shaloski, Michael A
Date Created and/or Issued
Time period of project: 2014-04-01 to 2016-01-01
Contributing Institution
UC San Diego, Research Data Curation Program
Collection
Center for Aerosol Impacts on Chemistry of the Environment (CAICE)
Rights Information
Under copyright
Constraint(s) on Use: This work is protected by the U.S. Copyright Law (Title 17, U.S.C.). Use of this work beyond that allowed by "fair use" or any license applied to this work requires written permission of the copyright holder(s). Responsibility for obtaining permissions and any use and distribution of this work rests exclusively with the user and not the UC San Diego Library. Inquiries can be made to the UC San Diego Library program having custody of the work.
Use: This work is available from the UC San Diego Library. This digital copy of the work is intended to support research, teaching, and private study.
Rights Holder and Contact
UC Regents
Description
Publication abstract: Gas−liquid scattering and product-yield experiments are used to investigate reactions of N2O5 with glycerol containing Br- and surfactant ions. N2O5 oxidizes Br- to Br2 for every solution tested: 2.7 M NaBr, 0.03 M tetrahexylammonium bromide (THABr), 0.03MTHABr + 0.5MNaBr, 0.03MTHABr + 0.5MNaCl, 0.03MTHABr + 0.01 M sodium dodecyl sulfate (SDS), and 0.01 M cetyltrimethylammonium bromide (CTABr). N2O5 also reacts with glycerol itself to produce mono- and dinitroglycerin. Surface tension measurements indicate that 0.03 M THABr and 2.7 M NaBr have similar interfacial Br- concentrations, though their bulk Br- concentrations differ by 90-fold. We find that twice as much Br2 is produced in the presence of THA+, implying that the conversion of Br- to Br2 is initiated at the interface, perhaps mediated by the charged, hydrophobic pocket within the surface THA+ cation. The addition of 0.5 M NaBr, 0.5 M NaCl, or 0.01 M SDS to 0.03 M THABr lowers the Br2 production rate by 23%, 63%, and 67% of the THABr value, respectively. When CTA+ is substituted for THA+,Br2 production drops to 12% of the THABr value. The generation of Br2 under such different conditions implies that trace amounts of surface-active alkylammonium ions can catalyze interfacial N2O5 reactions, even when salts and other surfactants are present.
Research Data Curation Program, UC San Diego, La Jolla, 92093-0175 (https://lib.ucsd.edu/rdcp )
Shaloski, Michael A.; Gord, Joseph R.; Staudt, Sean; Quinn, Sarah L.; Bertram, Timothy H.; Nathanson, Gilbert M. (2017). Data From: Reactions of N2O5 with Salty and Surfactant-Coated Glycerol: Interfacial Conversion of Br– to Br2 Mediated by Alkylammonium Cations. In Center for Aerosol Impacts on Chemistry of the Environment (CAICE). UC San Diego Library Digital Collections. https://doi.org/10.6075/J0DN437M
This package contains data and an explanatory readme file to reproduce figures 3-7 of “Reactions of N2O5 with Salty and Surfactant-Coated Glycerol: Interfacial Conversion of Br– to Br2 Mediated by Alkylammonium Cations”.
Type
dataset
Identifier
ark:/20775/bb4064378t
Subject
Liquid–gas scattering
Sea spray aerosol (SSA)
Microjet
Heterogeneous reaction
N2O5

About the collections in Calisphere

Learn more about the collections in Calisphere. View our statement on digital primary resources.

Copyright, permissions, and use

If you're wondering about permissions and what you can do with this item, a good starting point is the "rights information" on this page. See our terms of use for more tips.

Share your story

Has Calisphere helped you advance your research, complete a project, or find something meaningful? We'd love to hear about it; please send us a message.

Explore related content on Calisphere: