UC Riverside, Library, Water Resources Collections and Archives > Clearinghouse for Dam Removal Information (CDRI) > Coastal Habitats of the Elwha River, Washington-Biological and Physical Patterns and Processes Prior to Dam Removal

Text / Coastal Habitats of the Elwha River, Washington-Biological and Physical Patterns and Processes ...

Have a question about this item?

Item Information.

Title
Coastal Habitats of the Elwha River, Washington-Biological and Physical Patterns and Processes Prior to Dam Removal
Alternative Title
Scientific Investigations Report 2011-5120
Creator
Jeffrey J. Duda, Jonathan A. Warrick, and Christopher S. Magirl
Date Created and/or Issued
11-Sep
Publication Information
U.S. Geological Survey
Contributing Institution
UC Riverside, Library, Water Resources Collections and Archives
Collection
Clearinghouse for Dam Removal Information (CDRI)
Rights Information
Copyrighted
Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user.
Description
Scope/Content: Abstract: This report includes chapters that summarize the results of multidisciplinary studies to quantify and characterize the current (2011) status and baseline conditions of the lower Elwha River, its estuary, and the adjacent nearshore ecosystems prior to the historic removal of two long-standing dams that have strongly influenced river, estuary, and nearshore conditions. The studies were conducted as part of the U.S. Geological Survey Multi-disciplinary Coastal Habitats in Puget Sound (MD-CHIPS) project. Chapter 1 is the introductory chapter that provides background and a historical context for the Elwha River dam removal and ecosystem restoration project. In chapter 2, the volume and timing of sediment delivery to the estuary and nearshore are discussed, providing an overview of the sediment stored in the two reservoirs and the expected erosion mechanics of the reservoir sediment deposits after removal of the dams. Chapter 3 describes the geological background of the Olympic Peninsula and the geomorphology of the Elwha River and nearshore. Chapter 4 details a series of hydrological data collected by the MD-CHIPS Elwha project. These include groundwater monitoring, surface water-groundwater interactions in the estuary, an estimated surface-water budget to the estuary, and a series of temperature and salinity measurements. Chapter 5 details the work that has been completed in the nearshore, including the measurement of waves, tides, and currents; the development of a numerical hydrodynamic model; and a description of the freshwater plume entering the Strait of Juan de Fuca. Chapter 6 includes a characterization of the nearshore benthic substrate developed using sonar, which formed a habitat template used to design scuba surveys of the benthic biological communities. Chapter 7 describes the ecological studies conducted in the lower river and estuary and includes characterization of juvenile salmon diets and seasonal estuary utilization patterns using otolith analysis to determine habitat specific and hatchery compared with wild patterns in juvenile Chinook salmon, assessment of benthic and terrestrial macroinvertebrate communities, and seasonal patterns of water nutrients. In Chapter 8, the vegetation communities of the eastern estuary are characterized by mapped vegetation cover types and samples collected for vegetation composition and diversity. Chapter 9 summarizes the existing conditions of the study area as detailed in this report and describes some of the possible outcomes of river restoration on the coastal ecosystems of the Elwha River. Characterizing the physical and biological characteristics of the lower Elwha River, its estuary, and adjacent nearshore habitats prior to dam removal is essential to monitor changes to these areas during and following the historic dam-removal project set to begin in September 2011. Based on the size of the two hydroelectric projects and the amount of sediment that will be released, the Elwha River in Washington State will be home to the largest river restoration through dam removal attempted in the United States. Built in 1912 and 1927, respectively, the Elwha and Glines Canyon Dams have altered key physical and biological characteristics of the Elwha River. Once abundant salmon populations, consisting of all five species of Pacific salmon, are restricted to the lower 7.8 river kilometers downstream of Elwha Dam and are currently in low numbers. Dam removal will reopen access to more than 140 km of mainstem, flood plain, and tributary habitat, most of which is protected within Olympic National Park. The high capture rate of riverborne sediments by the two reservoirs has changed the geomorphology of the riverbed downstream of the dams. Mobilization and downstream transport of these accumulated reservoir sediments during and following dam removal will significantly change downstream river reaches, the estuary complex, and the nearshore environment. To introduce the more detailed studies that follow in this report, we summarize many of the key
Scope/Content: Dam type: concrete
Scope/Content: Date constructed: 1927. Date removed: 2011.
Type
text
Identifier
ark:/86086/n2cv4hcn
1190
Subject
Ecology and river restoration
Fisheries and fish passage
Pre- and post-project monitoring
Sediment and channel dynamics
Dams
Dam retirement
Place
Elwha, WA
Elwha and Glines Canyon dams

Explore related content on Calisphere: